706 research outputs found

    Effects of Instructional Model on Student Attitude in an Introductory Biology Laboratory

    Get PDF
    This study assessed student attitude towards reformed laboratories featuring a factorial design of inquiry (IN) and explicit / reflective (ER) pedagogy to foster nature of science understanding. Students in thirty-one lab sections responded to pre and post semester assessments of their confidence, perception of usefulness, and effectance motivation toward the laboratories. Relative change in attitude (RCA) was not significantly different (p\u3e0.05) among the treatments or their interaction for confidence, usefulness, or effectance motivation. Student self-reports (n = 137) of factors that affected their attitude suggested that grades and TAs played a larger role in determining student attitude than the laboratory treatments. This hints at the complex interactions that impact student attitude, and which should be considered when implementing course reforms

    Flux-transport dynamos with Lorentz force feedback on differential rotation and meridional flow: Saturation mechanism and torsional oscillations

    Full text link
    In this paper we discuss a dynamic flux-transport dynamo model that includes the feedback of the induced magnetic field on differential rotation and meridional flow. We consider two different approaches for the feedback: meanfield Lorentz force and quenching of transport coefficients such as turbulent viscosity and heat conductivity. We find that even strong feedback on the meridional flow does not change the character of the flux-transport dynamo significantly; however it leads to a significant reduction of differential rotation. To a large degree independent from the dynamo parameters, the saturation takes place when the toroidal field at the base of the convection zone reaches between 1.2 an 1.5 T, the energy converted intomagnetic energy corresponds to about 0.1 to 0.2% of the solar luminosity. The torsional oscillations produced through Lorentz force feedback on differential rotation show a dominant poleward propagating branch with the correct phase relation to the magnetic cycle. We show that incorporating enhanced surface cooling of the active region belt (as proposed by Spruit) leads to an equatorward propagating branch in good agreement with observations.Comment: 15 pages, 12 figures, Accepted for publication in ApJ August 10 issue; corrected typos, corrected referenc

    The Origin of Solar Activity in the Tachocline

    Full text link
    Solar active regions, produced by the emergence of tubes of strong magnetic field in the photosphere, are restricted to within 35 degrees of the solar equator. The nature of the dynamo processes that create and renew these fields, and are therefore responsible for solar magnetic phenomena, are not well understood. We analyze the magneto-rotational stability of the solar tachocline for general field geometry. This thin region of strong radial and latitudinal differential rotation, between the radiative and convective zones, is unstable at latitudes above 37 degrees, yet is stable closer to the equator. We propose that small-scale magneto-rotational turbulence prevents coherent magnetic dynamo action in the tachocline except in the vicinity of the equator, thus explaining the latitudinal restriction of active regions. Tying the magnetic dynamo to the tachocline elucidates the physical conditions and processes relevant to solar magnetism.Comment: 10 pages, 1 figure, accepted for publication in ApJ

    Swimming in Deep Waters. A Response to A Review of \u3cem\u3eTeaching as a Moral Practice\u3c/em\u3e

    Get PDF
    The authors respond to a review of their book, Teaching as a Moral Practice: Defining, Developing, and Assessing Dispositions. The authors emphasize a vision of shared commitments for quality teaching whereby teacher-educators instill and nurture the wisdom and virtue that a moral teacher must possess in order to teach in a variety of circumstances where clear-cut answers do not exist. In addition, teacher-educators help teachers discern how, in that context, they should enact particular knowledge, skills, and commitments to reach desired ends. The key to enact this vision of teaching as a shared, moral practice is critical colleagueship

    A conceptual framework for graduate teaching assistant professional development evaluation and research

    Get PDF
    © 2016 T. D. Reeves et al. Biology graduate teaching assistants (GTAs) are significant contributors to the educational mission of universities, particularly in introductory courses, yet there is a lack of empirical data on how to best prepare them for their teaching roles. This essay proposes a conceptual framework for biology GTA teaching professional development (TPD) program evaluation and research with three overarching variable categories for consideration: outcome variables, contextual variables, and moderating variables. The framework’s outcome variables go beyond GTA satisfaction and instead position GTA cognition, GTA teaching practice, and undergraduate learning outcomes as the foci of GTA TPD evaluation and research. For each GTA TPD outcome variable, key evaluation questions and example assessment instruments are introduced to demonstrate how the framework can be used to guide GTA TPD evaluation and research plans. A common conceptual framework is also essential to coordinating the collection and synthesis of empirical data on GTA TPD nationally. Thus, the proposed conceptual framework serves as both a guide for conducting GTA TPD evaluation at single institutions and as a means to coordinate research across institutions at a national level

    Inter-Rater Agreement and Validity of a Tackling Performance Assessment Scale in Youth American Football

    Get PDF
    Background: Long term neurologic injury and concussion have been identified as risks from participation in American football. Altering tackling form has been recommended to reduce the risk of neurologic injury caused by head accelerations when tackling. The purpose of this research is to determine the inter-rater agreement and validity of the Qualitative Youth Tackling System (QYTS), a six-item feedback scale to correct tackling form, when utilized by novice and expert raters. Hypothesis: Experienced raters will have higher levels of agreement with each other and with motion capture when compared to novice raters. Methods: Both novice and experienced raters viewed video of youth athletes (ages 9-13) tackling a dummy in a laboratory setting along. The raters identified successful performance according to a binary rating scale for each component. Analysis of both the raters\u27 agreement with each other and with an objective motion capture measure were completed. Results: Fliess\u27 Kappa measures between all raters were found to be moderate for head placement (k=.48), fair for cervical extension (k=.38), trunk inclination (k=.37), shoulder extension (k=.27) and step length (k=.29), and there was no agreement for pelvic height (k=.-16). When compared to the dichotomized validation measures of each of the five components provided by the motion capture system the average Cohen\u27s Kappa agreement was substantial for pelvic height (k=.63), fair for step length (k=.34), cervical extension (k=.40), trunk inclination (k=.35), and slight for shoulder extension (k=.16). The experienced raters out-performed the novice raters in all categories. Conclusion: The results of this study indicate that skilled raters are better able to identify the movement patterns included in the QYTS when compared to a validation measure as well have higher rates of interrater agreement than novice raters. Level of Evidence: 3

    Molecular diversity of arbuscular mycorrhizal fungi and patterns of host association over time and space in a tropical forest

    Get PDF
    We have used molecular techniques to investigate the diversity and distribution of the arbuscular mycorrhizal (AM) fungi colonizing tree seedling roots in the tropical forest on Barro Colorado Island (BCI), Republic of Panama. In the first year, we sampled newly emergent seedlings of the understory treelet Faramea occidentalis and the canopy emergent Tetragastris panamensis, from mixed seedling carpets at each of two sites. The following year we sampled surviving seedlings from these cohorts. The roots of 48 plants were analysed using AM fungal-specific primers to amplify and clone partial small subunit (SSU) ribosomal RNA gene sequences. Over 1300 clones were screened for random fragment length polymorphism (RFLP) variation and 7% of these were sequenced. Compared with AM fungal communities sampled from temperate habitats using the same method, the overall diversity was high, with a total of 30 AM fungal types identified. Seventeen of these types have not been recorded previously, with the remainder being similar to types reported from temperate habitats. The tropical mycorrhizal population showed significant spatial heterogeneity and nonrandom associations with the different hosts. Moreover there was a strong shift in the mycorrhizal communities over time. AM fungal types that were dominant in the newly germinated seedlings were almost entirely replaced by previously rare types in the surviving seedlings the following year. The high diversity and huge variation detected across time points, sites and hosts, implies that the AM fungal types are ecologically distinct and thus may have the potential to influence recruitment and host composition in tropical forests

    The Effect of Tackling Training on Head Accelerations in Youth American Football

    Get PDF
    Background: Many organizations have introduced frameworks to reduce the incidence of football related concussions through proper equipment fitting, coach education, and alteration of tackling technique. Purpose: The purpose of this study was to examine the effects of training in a vertical, head up tackling style on the number of head accelerations experienced while tackling in a controlled laboratory situation. The authors hypothesized that training in a head up tackling technique would reduce the severity of head acceleration experienced by participants. Design: Controlled Laboratory Study. Methods: Twenty-four participants (11.5 ± 0.6 years old, 60.5 ± 2.2 in, 110 ± 18.4 lbs.) with previous playing experience completed a one-day training session on tackling technique utilizing a tackling dummy. A subgroup of these participants completed an additional two days of training with a 48 hour retention test. Head accelerations were analyzed at baseline and end of training. Feedback consisted of verbal feedback utilizing the Qualitative Youth Tackling Scale (QYTS) and video tackling playback. Results: A significant reduction in the number of peak linear head accelerations over 10 g and peak rotational head accelerations over 1885 deg/s² were found in dummy tackling after training in both the one day and three day training regimens. A significant change in QYTS tackling form score was found between pretest and post-test (p=0.004). Participants with larger steps had a 2.28, 4.42 and 4.14 increased odds ratio of sustaining head accelerations over 10, 15 and 20 g respectively. Conclusions: Training in a vertical, head up tackling style decreased the number of head accelerations over threshold values sustained while tackling; decreased step length may be the driving factor in the effectiveness of this tackling form. Level of Evidence: Level 3

    Torsional Magnetic Oscillations in Type I X-Ray Bursts

    Get PDF
    Thermonuclear burning on the surface of a neutron star causes the expansion of a thin outer layer of the star, ΔR(t)\Delta R(t). The layer rotates slower than the star due to angular momentum conservation. The shear between the star and the layer acts to twist the star's dipole magnetic field giving at first a trailing spiral field. The twist of the field acts in turn to `torque up' the layer increasing its specific angular momentum. As the layer cools and contracts, its excess specific angular momentum causes it to {\it rotate faster} than the star which gives a leading spiral magnetic field. The process repeats, giving rise to torsional oscillations. We derive equations for the angular velocity and magnetic field of the layer taking into account the diffusivity and viscosity which are probably due to turbulence. The magnetic field causes a nonuniformity of the star's photosphere (at the top of the heated layer), and this gives rise to the observed X-ray oscillations. The fact that the layer periodically rotates faster than the star means that the X-ray oscillation frequency may ``overshoot'' the star's rotation frequency. Comparison of the theory is made with observations of Chakrabarty et al. (2003) of an X-ray burst of SAX J1808.4-3658.Comment: 7 pages, 6 figures, accepted for publication in the Ap
    • …
    corecore